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1. Introduction

The generalized second law of thermodynamics was initially put forth for a system including

black holes by Bekenstein [1 – 3]. It states that the sum of one quarter of the area of the

black hole’s event horizon plus the entropy of ordinary matter outside never decreases with

time in all processes. It is noteworthy that for the formation or absorption of black holes

the generalized second law of thermodynamics can also be equivalently formulated as a

covariant entropy bound. Namely, the entropy flux S through the event horizon between

its two-dimensional space-like surfaces of area Ae and A′
e must satisfy

S ≤
A′

e − Ae

4
, (1.1)

where A′
e ≥ Ae is assumed.

However, due to the global and teleological property of event horizon, the notion of

dynamical horizon was developed and its properties were investigated, where, in particular,

the first and second laws of black hole mechanics was generalized to the dynamical hori-

zon [4 – 7]. Thus it is tempting to conjecture that the dynamical horizon may also have the

thermal character as the event horizon does, and the generalized second law of thermody-

namics may also be applied to the dynamical horizon. This is what we shall address in the

present paper. In next section, we shall propose a covariant entropy bound formulation of

the generalized second law of thermodynamics associated with the black hole dynamical

horizon. Then its validity is demonstrated in a model of a growing black hole by spherically

symmetrical collapse of thick light shells. Some discussions are presented in the end.

The signature of metric takes (−,+,+,+). Notation and conventions follow ref. [8].
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Figure 1: A black hole dynamical horizon H between its apparent horizon of area A and A′ with

entropy current sa flowing through it.

2. The generalized second law of thermodynamics associated with the

black hole dynamical horizon

We would first like to introduce the basic definition of the black hole dynamical horizon.

For more subtle details, please refer to ref. [5] and references therein.

Definition: A smooth, three-dimensional, space-like sub-manifold in a space-time

(M,gab) is said to be a black hole dynamical horizon if it can be foliated by a family of closed

two-dimensional surfaces such that, on each leaf, the expansion θl of one future-directed

null normal la vanishes and the expansion θn of the other future-directed null normal na

is strictly negative. If we choose the normalization of la and na such that lana = −2, then

the expansion of the null geodesics normal can be given by θl = hab∇alb(θn = hab∇anb)

with the induced metric hab = gab + 1
2
(lanb + nalb) on each leaf.

Thus, roughly speaking, a black hole dynamical horizon is a space-like hyper-surface

which is foliated by closed apparent horizons, where la and na represent future-directed

outgoing and ingoing null normals, respectively. See figure 1. Note that, in contrast to the

notion of the event horizon, the dynamical horizon can be identified quasi-locally without

knowledge of the full space-time history. In addition, intuitively, it is clear that no signal

can propagate out of the dynamical horizon due to the fact that the dynamical horizon is

space-like. All of these make the dynamical horizon become a competent candidate for the

boundary of the black hole.

Now associated with the alternative boundary of the black hole, the generalized second

law of thermodynamics can be naturally formulated in a covariant way as follows: The

entropy flux S through the black hole dynamical horizon between its apparent horizons of

area A and A′ must satisfy S ≤ A′−A
4

if the dominant energy condition holds for matter,

where A′ > A is assumed.

In the subsequent section, its validity will be tested by adiabatically collapsing thick

light shells.
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3. The generalized second law of thermodynamics tested by adiabatically

collapsing thick light shells

Start with a model of formation of a black hole by spherically symmetrical collapse of thick

light shells in Eddington-Finkelstein coordinate [9]

ds2 = −dt2 + dr2 + r2dΩ2 + u(dt + dr)2, (3.1)

where

u =











0, Minkowski region,
2m
r

F ( r+t
∆

), within light shells,
2m
r

, Schwarzschild region.

(3.2)

Here both m and ∆ are constant parameters. In addition, F is a monotonically increasing

function with respect to its argument, with F (0) = 0, and F (1) = 1. Thus F essentially

serves as a density profile function. After a straightforward but tedious calculation, one

finds that this metric is a solution of Einstein equation with the non-vanishing energy

momentum tensor within light shells being given by

Tab =
mF ′

4π∆r2
kakb, (3.3)

where F ′ denotes the derivative of F with respect to its argument, and the null vector field

ka = (dt)a + (dr)a. Clearly, the energy momentum tensor satisfies the dominant energy

condition due to F ′ > 0.

Specifically speaking, this model describes a family of concentric light shells with a flat

Minkowski interior, ending with a final black hole of Schwarzschild radius R = 2m. The

innermost light shell reaches the center at the time t = 0, and after the total duration of

collapse ∆ the outmost light shell finally arrives at the singularity. See figure 2.

Next, to locate the black hole dynamical horizon in this model, let us first compute the

initial expansion of the future-directed null normal to an arbitrary sphere characterized by

some value of (t, r). The outgoing and ingoing null normals to these spheres can be chosen

to be, respectively,

la = (1 + u)

(

∂

∂t

)a

+ (1 − u)

(

∂

∂r

)a

, na = ka =

(

∂

∂t

)a

−

(

∂

∂r

)a

, (3.4)

then the corresponding expansions can be obtained as

θl =
2(1 − u)

r
, θn = −

2

r
. (3.5)

Obviously, it follows from the definition presented in section 2 that the hyper-surface u = 1

is a black hole dynamical horizon if and only if its normal vector field is time-like, i.e.,

gab∇au∇bu|u=1 = 2
∂u

∂t
(
∂u

∂r
−

∂u

∂t
)|u=1 < 0. (3.6)
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Figure 2: A black hole is being formed by collapse of thick light shells between r + t = 0 and

r + t = ∆ in Eddington-Finkelstein coordinate, falling through the black hole dynamical horizon

r = 2mF , which also serves as the infinite redshift surface.

Thus, according to eq. (3.2), it is easy to find that the black hole dynamical horizon here is

only the hyper-surface u = 1 within light shells, i.e., between the hyper-surfaces r + t = 0

and r + t = ∆, as shown in figure 2.

To proceed, we further assume that the collapse of light shells is adiabatical. Therefor

the conserved entropy current of light shells can be written as

sa =
s′( r+t

∆
)

4π∆r2
ka, (3.7)

where the derivative of a function s with respect to its argument s′ > 0.

We shall now check whether the generalized second law of thermodynamics is satisfied

for the black hole dynamical horizon. As demonstrated in figure 2, let z′ > z, then the

area difference of apparent horizons lying in r + t = z and r + t = z′ reads

δA = 16πm2

[

F 2

(

z′

∆

)

− F 2

(

z

∆

)]

. (3.8)

On the other hand, by the conservation of the entropy current and Gauss theorem, the

entropy flux S through the black hole dynamical horizon between the above apparent

horizon is equal to that through the space confined within z − tp < r < z′ − tp at a time tp

in the distant past. Note that in the distant past, the light shells resided in asymptotically

flat region. Thus by eq. (3.3), the effective mass of light shells between r + t = z and
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r + t = z′ can be obtained as

Meff = m

[

F

(

z′

∆

)

− F

(

z

∆

)]

, (3.9)

which equals the mass of the final black hole formed by collapse of these light shells. So

employing eq. (1.1), we have an upper bound on the entropy flux S

S ≤ 4πm2

[

F

(

z′

∆

)

− F

(

z

∆

)]2

. (3.10)

Combining eq. (3.8) with eq. (3.10), we have

S ≤
δA

4
, (3.11)

which confirms the generalized second law of thermodynamics for the black hole dynamical

horizon.

4. Discussions

We have proposed a new generalized second law of thermodynamics based on the notion

of a black hole dynamical horizon. Its validity has also been demonstrated in a physically

reasonable model of black hole formation by adiabatical collapse of thick light shells.

As mentioned in the beginning, along with the first and second laws of black hole

mechanics for the dynamical horizon , our result further implies the black hole dynamical

horizon may also have an interpretation of thermodynamics, especially one quarter of

area of the black hole dynamical horizon may be identified with its entropy. It is therefore

interesting to analyze if a derivation of the black hole entropy is available for the dynamical

horizon based on the counting of micro-states in quantum gravity such as causal set theory,

loop quantum gravity and string theory [10 – 14].

Even if it turns out that the black hole dynamical horizon has no interpretation of

thermodynamics in an underlying quantum theory of gravity, our proposal can still be

viewed as a covariant entropy bound conjecture on the dynamical horizon. It is noteworthy

that its validity has also been verified in the cosmological context no matter whether the

dynamical horizon is space-like or not [15]. Thus it is natural to expect that our proposal

as a covariant entropy bound holds for the time-like analog of the black hole dynamical

horizon.
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